Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.26.424450

ABSTRACT

The coronavirus nucleocapsid protein (N) controls viral genome packaging and contains numerous phosphorylation sites located within unstructured regions. Phosphorylated SARS-CoV N was shown to bind to the host 14-3-3 protein in the cytoplasm. Proteomic data indicate that seven human 14-3-3 proteins are highly abundant in human tissues vulnerable to SARS-CoV-2 infection, collectively reaching ~1.8% of all proteins in the lungs, ~1.4% in the gastrointestinal system, ~2.3% in the nervous system. Although the association between 14-3-3 and SARS-CoV-2 N proteins can represent one of the key host-pathogen interactions, its mechanism and the specific critical phosphosites were unknown. Here, we show that phosphorylated SARS-CoV-2 N protein (pN) dimers, reconstituted via bacterial co-expression with protein kinase A, directly associate, in a phosphorylation-dependent manner, with the dimeric 14-3-3 protein hub, but not with its monomeric mutant. We demonstrate that pN is recognized by all seven human 14-3-3 isoforms with various efficiencies and determine the apparent KD to selected isoforms in a low micromolar range. Serial truncations pinpointed a critical phosphorylation site to Ser197, located within the SR-rich region of N. The tight 14-3-3/pN association suggests it could regulate nucleocytoplasmic shuttling of N, while hijacking cellular pathways by 14-3-3 sequestration. As such, the assembly may represent a valuable target for therapeutic intervention.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19
2.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.24.20248834

ABSTRACT

Birmingham University Turnkey laboratory is part of the Lighthouse network responsible for testing clinical samples under the UK government ‘ Test & Trace’ scheme. Samples are analysed for the presence of SARS-CoV-2 in respiratory samples using the Thermofisher TaqPath RT-QPCR test, which is designed to co-amplify sections of three SARS-CoV-2 viral genes. Since more recent information became available regarding the presence of SARS-CoV-2 variants of concern (S-VoC), which can show a suboptimal profile in RT-QPCR tests such as the ThermoFisher TaqPath used at the majority of Lighthouse laboratories, we analysed recently published data for trends and significance of the S-gene ‘dropout’ variant. Results: showed that: the population of S-gene dropout samples had significantly lower median Ct values of ORF and N-gene targets compared to samples where S-gene was detected on a population basis, S-gene dropout samples clustered around very low Ct values for ORF and N targets linked Ct values for individual samples showed that a low Ct for ORF and N were clearly associated with an S-dropout characteristic when conservatively inferring relative viral load from Ct values, approximately 35% of S-dropout samples had high viral loads between 10 and 10,000-fold greater than 1 × 10 6 , compared to 10% of S-positive samples. This analysis suggests that patients whose samples exhibit the S-dropout profile in the TaqPath test are more likely to have high viral loads at the time of sampling. The relevance of this to epidemiological reports of fast spread of the SARS-CoV-2 in regions of the UK is discussed.

3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.12.25.424300

ABSTRACT

Gut microbiota plays a critical role in the induction of adaptive immune responses to influenza virus infection. However, the role of nasal bacteria in the induction of the virus-specific adaptive immunity is less clear. Here we demonstrate that while intranasal administration of influenza virus hemagglutinin vaccine alone was insufficient to induce the vaccine-specific antibody responses, disruption of nasal bacteria by lysozyme or addition of culturable oral bacteria from a healthy human volunteer rescued inability of the nasal bacteria to generate antibody responses to intranasally administered the split-virus vaccine. Myd88-depdnent signaling in the hematopoietic compartment was required for adjuvant activity of intranasally administered oral bacteria. In addition, we found that the oral bacteria-combined intranasal vaccine induced protective antibody response to influenza virus and SARS-CoV-2 infection. Our findings here have identified a previously unappreciated role for nasal bacteria in the induction of the virus-specific adaptive immune responses.


Subject(s)
COVID-19 , Influenza, Human
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.01.20237784

ABSTRACT

Lateral flow devices are quickly being implemented for use in large scale population surveillance programs for SARS-CoV-2 infection in the United Kingdom. These programs have been piloted in city wide screening in the city of Liverpool, and are now being rolled out to support care home visits and the return home of University students for the Christmas break. Very little data exists comparing the performance of the UK lateral flow tests with gold standard PCR diagnostics, especially against comparable test populations such as the national Pillar 2 testing program in the United Kingdom. Here we utilise thousands of pillar 2 test data from our University of Birmingham test lab, and by extrapolation against the validate limit-of-detection of the lateral flow assay, provide a potential sensitivity for the test in a comparable low prevalence population captured in the pillar 2 program. Our data suggests the lateral flow assay should successfully capture around 85% of all PCR positive tests performed in our pillar 2 laboratory, and that a fully designed comparative study of lateral flow versus PCR testing is merited in a real life testing environment


Subject(s)
COVID-19
5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.30.20229732

ABSTRACT

BackgroundFrequently SARS-CoV-2 results in mild or moderate disease with potentially lower concentrations of antibodies compared to those that are hospitalised. Here, we validated an ELISA using SARS-CoV-2 trimeric spike glycoprotein, with targeted detection of IgG, IgA and IgM (IgGAM) using serum and dried blood spots (DBS) from adults with mild or moderate disease. MethodsTargeting the SARS-CoV-2 trimeric spike, a combined anti-IgG, IgA and IgM serology ELISA assay was developed using 62 PCR-confirmed non-hospitalised, mild or moderate COVID-19 samples, [≥]14 days post symptom onset and 624 COVID-19 negative samples. The assay was validated using 73 PCR-confirmed non-hospitalised COVID-19 and 359 COVID-19 negative serum samples with an additional 81 DBSs, and further validated in 226 PCR-confirmed non-hospitalised COVID-19 and 426 COVID-19 negative clinical samples. ResultsA sensitivity and specificity of 98.6% (95% CI, 92.6-100.0), 98.3% (95% CI, 96.4-99.4), respectively, was observed following validation of the SARS-CoV-2 ELISA. No cross-reactivities with endemic coronaviruses or other human viruses were observed, and no change in results were recorded for interfering substances. The assay was stable at temperature extremes and components were stable for 15 days once opened. A matrix comparison showed DBS to correlate with serum results. Clinical validation of the assay reported a sensitivity of 94.7% (95% CI, 90.9-97.2%) and a specificity of 98.4% (95% CI, 96.6-99.3%). ConclusionsThe human anti-IgGAM SARS-CoV-2 ELISA provides accurate and sensitive detection of SARS-CoV-2 antibodies in non-hospitalised adults with mild or moderate disease. The use of dried blood spots makes the assay accessible to the wider community. Supplementary MaterialNo


Subject(s)
COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.06.16.20133025

ABSTRACT

Background: Detecting antibody responses during and after SARS-CoV-2 infection is essential in determining the seroepidemiology of the virus and the potential role of antibody in disease. Scalable, sensitive and specific serological assays are essential to this process. The detection of antibody in hospitalized patients with severe disease has proven straightforward; detecting responses in subjects with mild disease and asymptomatic infections has proven less reliable. We hypothesized that the suboptimal sensitivity of antibody assays and the compartmentalization of the antibody response may contribute to this effect. Methods: We systemically developed an ELISA assay, optimising different antigens and amplification steps, in serum and saliva from symptomatic and asymptomatic SARS-CoV-2-infected subjects. Results: Using trimeric spike glycoprotein, rather than nucleocapsid enabled detection of responses in individuals with low antibody responses. IgG1 and IgG3 predominate to both antigens, but more anti-spike IgG1 than IgG3 was detectable. All antigens were effective for detecting responses in hospitalized patients. Anti-spike, but not nucleocapsid, IgG, IgA and IgM antibody responses were readily detectable in saliva from non-hospitalized symptomatic and asymptomatic individuals. Antibody responses in saliva and serum were largely independent of each other and symptom reporting. Conclusions. Detecting antibody responses in both saliva and serum is optimal for determining virus exposure and understanding immune responses after SARS-CoV-2 infection. Funding. This work was funded by the University of Birmingham, the National Institute for Health Research (UK), the NIH National Institute for Allergy and Infectious Diseases, the Bill and Melinda Gates Foundation and the University of Southampton.


Subject(s)
Severe Acute Respiratory Syndrome , COVID-19 , Drug Hypersensitivity , Asymptomatic Infections
SELECTION OF CITATIONS
SEARCH DETAIL